Carbondata Compaction

Objective:

Design a methodology multiple segments of Carbondata files in memory into smaller number of
segments, either based on size or count constraints as supplied by the user. The Compaction
operation is valid for both partitioned tables and simple non-partitioned tables.

Outcome:
After the Compaction operation (aka VACUUM), the number of segments maintained in memory
for the data will be reduced.
The following figure shows the structure of the files stored in memory after the Compaction
operation is completed-

drwxr-xr-x supergroup

drwxrwxrwx supergroup 0 2020-0 . ser/ are : .5 3] 194 untomer rec_2/Fact/Part8/Segme 8.1
drwxr-xr-x supergroup 0 202 fuser/ are : .5] S : untomer_rec

drwxr-xr-x supergroup B ! Pl r,/ are : .S]] : tomer_rec
drwxr-xr-x supergroup B 13 ser/ are ; .5]] : htomer rec
drwxr-xr-x supergroup B 2020-8 8 155 .atore,cuatomer,cuatomer rec z;Fact,PartU,begment 4

Segment_0.1 is the compacted segment and the others are the original segments before
compaction.

Types of Compaction:

There are two types of compaction that may be triggered based on the requirement-

1. Major Compaction: Here, the segments are merged based on their sizes. The default value
is 1GB, therefore as long as the total size of all existing segments for the table is less than
1GB, the segments can be merged into a new single segment. This value can also be
changed by the user parameter, supplied in the file carbondata.properties-
“carbondata.major-compaction-seg-size”

2. Minor Compaction: Here, the segments are merged based on the count provided. The
default value is 4, which means that the segments are merged in groups of 4. This can be
changed as well based on the count provided by the user, as follows, in the file
carbondata.properties- “carbondata.minor-compaction-seg-count”

The values can be provided as such-
pondata.minor-compaction-seg-count = 6

arbondata. ma1ur cumract19n--eq--1LE = 2

Query Details:

The following query is submitted to the client to start the compaction-
1. For Major Compaction- VACUUM TABLE table_name FULL;
2. For Minor Compaction- VACUUM TABLE table_name;

Design Diagram:
The following diagram highlights the steps followed to call the beginVacuum() method. Since,

VACUUM is a new query type, not part of the ANSI standard, we modify the SqlBase.g4 file and
ensure that the command is interpreted as a new query. Once, the query has been parsed correctly,
it is sent to CarbondataMetadata which sets the context and initial bootstrapping that will be used

for the query.

interaction beginVacuum)

LocalDispatchQuery

SqlQueryManager || SglQueryExecution LogicalPlanner MetadataManager

| BeginTableWrite

ClassLoaderSafeConnectorMetad. ||Ca.r" dataMetadata

1:accept

i 2 start
I:I 3:plan
‘ ‘ D 4 - optimize
~ 5 beginVacuum

6 - beginVacuum

T

7 - beginVacuum

h J
IO i A e Oy O e O gy O g O gy O ey O ey

In terms of code, beginVacuum() has the following signature-

@0verride
public CarbondatavacuumTableHandle beginVacuum(ConnectorSession session, ConnectorTableHandle tableHandle, boolean full, Optional<String> partition) throws PrestoException
{
currentState = State.VACUUM;
HiveInsertTableHandle insertTableHandle = super.beginInsert(session, tableHandle);
return hdfsEnvironment.doAs(session.getUser(), () -> {
SchemaTableName tableName = insertTableHandle.getSchemaTableName();
Optional<Table> table =
this.metastore.getTable(tableName.getSchemaName(), tableName.getTableName());
this.table = table;

CarbondataSplitManager.java calls the method getSplits () which collects all the splits which are
to be compacted and sent to the workers for compaction. The following design diagram shows the

steps involved-

interaction Vacuum-Coordinator J

| Logical Planner VacuumTableNode | | SplitManager || CarbondataSplitManager

SqlQueryExecution

2

"""" BinewPian]

7 - planDistribution
«creates

e e

10 JdoPlan
11 - visitor.accept =

12 - visitVacuumTable
L 13T VvisitScanAndFilter H
14 : getSplits H 15 - getSplits
J |_|—’[]

Finally, the compaction is performed in the performCompaction() method called from vacuum()
method inside CarbondataPageSink.java, which runs on the side of the Workers in the cluster. The
signature for the method is as follows-

public void performCompaction(CarbondataPageSource connectorPageSource, HiveSplit split) throws PrestoException
{
HdfsEnvironment hdfsEnvironment = connectorPageSource.getHdfsEnvironment()
hdfsEnvironment.doAs (session.getUser(), () -> {
try {
// Worker part: each thread to run this code
boolean mergeStatus = false;
List=CarbonInputSplit> splitlList = convertAndGetCarbonSplits(split);

CarbonTable carbonTable = connectorPageSource.getCarbonTable();
String databaseName = carbonTable.getDatabaseName();
string factTableName = carbonTable.getTableName()

